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A linear solution modelling the shock-cell structure of an axisymmetric supersonic 
jet operated at slightly off-design conditions is developed by the method of multiple 
scales. The model solution takes into account the gradual spatial change of the mean 
flow in the downstream direction. Turbulence in the mixing layer of the jet has the 
tendency to smooth out the sharp velocity and density gradients induced by the 
shocks. To simulate this effect, eddy-viscosity terms are incorporated in the model. 
Extensive comparisons between the numerical results of the present model and 
experimental measurements gathered at the NASA Langley Research Center over the 
Mach number range of l q - p d l  < 1.0 for underexpanded and overexpanded 
supersonic jets are carried out. Here M j  is the fully expanded jet Mach number and 
Md is the design Mach number of the convergenedivergent nozzle. Very favourable 
agreement is found. This is especially true for the gross features of the shock cells, 
including the shock-cell spacings and the pressure amplitudes associated with the 
shocks. The measured data show that the pressure distributions over the first three 
or four shock cells usually are rich in fine structures. These fine structures are 
reproduced by the calculated results. Beyond the first few shock cells the model 
predicts that the shock-cell structure can be represented by a single Fourier mode 
of the mean flow. This is confirmed by a careful examination of the experimental data. 
The appropriate turbulent Reynolds number for shock-cell structure calculation is 
investigated. It is shown that the best choice is the same as the value found to give 
the best results for jet mean-flow calculation. The present model is used to explain 
some of the observed characteristics of broadband shock-associated noise. 

1. Introduction 
In this paper an analytical model of the quasi-periodic shock-cell structure of an 

imperfectly expanded supersonic jet is developed using the method of multiple-scales 
asymptotic expansion. This work represents a part of the authors’ efforts to develop 
a mathematical theory of broadband shock-associated noise of supersonic jets. In a 
recent paper, Tam & Tanna (1982) suggested that this type of noise is generated by 
the weak interaction between the quasi-periodic shock cells and the downstream- 
propagating large turbulence structures in the mixing layer of the jet. The weak 
interaction produces coherent wave-like disturbances. These disturbances propagate 
along the jet column in both the upstream and downstream directions. Some of these 
disturbances have wave components which travel with supersonic phase speeds 
relative to the ambient condition. These supersonic components, by the wavy wall 
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analogy, lead immediately to acoustic radiation in the form of Mach waves. In the 
far field this form of radiated sound becomes the observed shock-associated noise. 

To quantify their proposed noise-generation mechanism Tam & Tanna (1982) used 
simple analytical models to represent the nearly periodic shock cells and the large 
turbulence structures of the jet. By means of these simple models they derived the 
shock-associated noise-intensity scaling formula 

Icc (M?--M2,)2, (1.1) 

where I is the noise intensity, Mj is the fully expanded jet Mach number and Md is 
the design Mach number of the convergent-divergent nozzle. In  addition, they showed 
that at  a given far-field direction B the frequency corresponding to the spectral peak 
of the broadband shock-associated noise is given by 

U C  ’= L(1-Mc cosB)’ 

where L is the fundamental period or spacing of the weak shock cells, uc is the 
convection velocity of the large turbulence structures and Mc is the convection Mach 
number of the large turbulence structures. It is equal to the ratio of uc to the ambient 
speed of sound. The above formulae are applicable to shock-associated noise of super- 
sonic jets operated at  slightly off-design conditions. On comparing the predictions 
of the noise-intensity scaling formula (1.1) and the peak-frequency formula (1 .2)  with 
their experimental measurements very favourable agreement was found. The 
comparison involved data taken at a wide range of jet operating conditions, including 
hot and cold jets at underexpanded as well as overexpanded pressure ratios. The 
favourable agreement over such a relatively broad range of jet operating conditions 
provides strong support for the belief that the proposed mechanism is generally valid. 

The vortex-sheet shock-cell model solution used by Tam & Tanna is adequate only 
as a first approximation. It provides a reasonably good description of the weak shock 
cells in the region immediately downstream of the nozzle exit where the mixing layer 
is thin. Experimentally, however, Seiner & Norum (1980) and Seiner & Yu (1981) 
found from in-flow correlations with the acoustic near field that dominant shock-noise 
sources are located several shocks beyond the nozzle exit. This observation was also 
made by Norum & Seiner ( 1 9 8 2 ~ )  using an acoustic source location method. The 
dominant shock-noise source locations indicated from these experiments was that 
they lie nearer the end of the plume’s potential core. In this region, the mixing layer 
is quite thick. Therefore, the vortex-sheet shock-cell model cannot be very accurate 
there. In  addition, the vortex-sheet solution implies that the amplitude of each 
Fourier component of the shock-cell structure remains constant along the entire 
length of the jet. In reality, due to the spatial change of the mean flow and the effect 
of turbulence in the mixing layer of the jet the shock-cell strength decreases in the 
downstream direction, as is evident from the experimental observations reported by 
Seiner & Norum (1979). The shock-cell strength becomes vanishingly small beyond 
the transonic point. Thus, in order to be able to predict the characteristics and the 
absolute intensity of shock-associated noise more accurately, a more realistic 
shock-cell model solution which takes into account the spatial evolution of the mean 
flow is needed. 

Near the nozzle exit the shock-cell structure is usually rich in fine detail (see the 
measured data in figures 3-8). However, for the purpose of calculating broadband 
shock-associated noise i t  is the gross features of the shock cells in the region close 
to the end of the potential core of the supersonic jet which are important. In this 
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paper emphasis will, therefore, be placed not so much on the fine structure of the 
shock cells but on the overall gross features, such as shock-cell spacings and shock 
intensity. Experimental observations by Norum & Seiner (1982b) and Tam & Tanna 
(1982) indicate that, beyond the range of jet operating condition defined by 

Iq-2Mzdl < 1.0, (1.3) 

the shock-associated noise-intensity scaling formula (1.1) no longer applies. The 
reason for this is the appearance of a Mach disk immediately downstream of the nozzle 
exit. In  this study, the primary concern is hence restricted to the shock-cell structure 
of weakly imperfectly expanded supersonic jets within the range of fully expanded 
jet Mach number Mj given by (1.3). 

Many attempts have been made in the past to calculate the shock-cell spacings of 
imperfectly expanded supersonic jets. Earlier works include the vortex-sheet model 
of Prandtl (1904) and Pack (1950) (see also Tam 1972). Subsequently a number of 
investigators (e.g. Adamson & Nicholls (1959) and Love (1959)) used inviscid-flow 
models and the method of characteristics to determine the structural detail of the 
shock cells close to the nozzle exit. No attempt, however, had been made by these 
investigators to extend their studies beyond the first two to three shock cells. More 
recently, Salas (1974) and Dash & Thorpe (1978) developed inviscid Euler codes to 
calculate the shock cells numerically. Comparisons of these inviscid numerical 
methods with experimental data as reported by Seiner & Norum (1979,1980) showed 
that these models do not provide acceptable results for the prediction of broadband 
shock-associated noise. The model has since been improved by Daah & Wolf (1983) 
to include the effect of turbulent mixing through the use of turbulence closure 
equations. The numerical code was tested by Seiner, Dash & Wolf (1983) and found 
to provide results that agree reasonably well with experimental measurements. In 
contrast to the numerical approach of Dash & Wolf the present work is analytical 
and is based on the method of multiple-scales asymptotic expansion. One important 
advantage of the present analytical model appears to be that it provides a simple 
and natural way to investigate the physics of the shock cells and their relationship 
to broadband shock-associated noise. (This will be elaborated upon later in this 
paper.) Moreover, it  is relatively easy to incorporate the present model into a 
shock-associated noise theory based on the weak-interaction model of Tam & Tanna 
(1982). 

In  $2 of this paper a multiple-scales model of the shock-cell structure of an 
axisymmetric supersonic jet will be developed. In  this model the effect of turbulence 
in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity 
terms to the momentum equation. Numerical results of this model for both 
overexpanded and underexpanded jets will be presented in $4. Extensive comparisons 
with experimental measurements will be made. Very favourable overall agreement 
is obtained. The agreement is especially good for the gross features of the shock cells 
near the end of the potential core of the jet. Based on the results of this model a 
physical explanation as to why broadband shock-associated noise usually contains 
only a single dominant spectral peak is provided. 

2. A multiple-scales shock-cell model 
At the nozzle exit of an imperfectly expanded axisymmetric supersonic jet there 

is a mismatch between the static pressure inside and outside the jet. In  order to 
eliminate this pressure difference, shock waves (or expansion fans in the case of 
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underexpanded jets) are formed near the nozzle lip. These shocks or expansion fans 
propagate in the downstream direction. After reflection at the jet axis they eventually 
propagate to the opposite edge of the supersonic jet boundary. For static jets or jets 
with subsonic mean flow outside, these disturbances are reflected back as they cannot 
be transmitted into the outside subsonic environment. To maintain pressure 
equilibrium at the jet boundary, a shock is reflected back as an expansion wave and 
vice versa. The successive reflections of the shocks and expansion waves along the 
jet boundary give rise to the quasi-periodic shock-cell structure. 

For supersonic jets operating at slightly off-design conditions the shocks and 
expansion fans are relatively weak. Prandtl (1904) and later Pack (1950) proposed 
to model such a weak shock-cell structure as a small-amplitude disturbance 
superimposed on an otherwise perfectly expanded jet. They chose, for simplicity, 
to represent the perfectly expanded jet by a column of uniform flow bounded by a 
vortex sheet. It turns out that, for a given pressure difference A p  at the nozzle exit, 
the linear boundary-value problem corresponding to the vortex-sheet model can be 
solved exactly. If p ,  denotes the pressure perturbation of the shock-cell strudture, 
(pa +pa)  being the actual pressure inside the jet, then in cylindrical coordinates (r, 8 , ~ )  
as shown in figure 1 the solution for p ,  is 

where 

( 2 . 1 ~ )  

(2.16) 

J,(h,) = 0 (i = 1 , 2 , 3 ,  ...). ( 2 . l c )  

In (2 .1)  M, is the fully expanded jet Mach number, J,  and J 1  are Bessel functions 
of orders 0 and 1 respectively, and D, is the fully expanded jet diameter. It is related 
to the nozzle-exit diameter D by the condition of conservation of mass flux. An 
explicit formula relating these two quantities had been given by Tam t Tanna (1982) 
as 

In (2 .2)  y is the ratio of specific heats and Md is the nozzle-design Mach number. The 
magnitude of pressure mismatch Ap is a function of the fully expanded jet Mach 
number M,. By using one-dimensional isentropic nozzle-flow relations it is straight- 
forward to derive that 

where pj and Uj are the fully expanded jet density and velocity respectively. 
Equation (2 .1)  is a slight generalization of the solution obtained by Prandtl and 

Pack. Here provision has been made for the possibility that the fully expanded jet 
diameter, D, (see figure l ) ,  is larger than the physical diameter of the nozzle a t  its 
exit D .  This situation arises when a jet is operating at an underexpanded condition. 
For these jets the appropriate boundary conditions at  the nozzle exit x = 0, as 
dictated by the physical problem, are 

v, (the radial velocity component) = 0; r < +Dj. 

Boundary condition (2 .4)  has been used to derive solution (2 .1) .  
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FIQURE 1. Schematic diagram showing the shock-cell system downstream of the nozzle exit of' 
an imperfectly expanded supersonic jet bounded by a vortex sheet. 

On the other hand, for overexpanded jets Dj is smaller than D so that instead of 
(2.4) the appropriate boundary conditions at the nozzle exit x = 0 are for purposes 
of the present analysis given by 

Upon using this new boundary condition it is found that the solution is again given 
by (2.1), provided that the factor D / D j  in (2.lb) is replaced by unity. 

Physically, solution (2.1) may be regarded as a Fourier decomposition of the 
quasi-periodic shock-cell structure into the eigenmodes of the mean flow. In  the above 
model the mean flow consists of a vortex-sheet jet. Another way of interpreting this 
solution is that the jet acts more or less as a waveguide for the pressure disturbances 
generated by the static pressure mismatch at the nozzle exit. These disturbances 
propagate downstream along the waveguide. Inside the waveguide these 
disturbances are decomposed selectively into the intrinsic eigenmodes of the mean 
flow. By combining these various time-independent eigenmodes linearly one can 
reconstruct the weak shock-cell structure of the supersonic jet. 

Within the jet operating range defined by (1.3) the weak shock (linear) assumption 
used by Prandtl and Pack appears to be reasonable. This statement is supported by 
the favourable agreement obtained between the numerical results of this work and 
experiment to be described in $4. However, the vortex-sheet model has two major 
drawbacks. First, in a real jet the thickness of the mixing layer, except in the region 
immediately downstream of the nozzle exit, is not small. The thickness increases in 
the downstream direction due to the entrainment of ambient fluid until, at the end 
of the potential core, the jet acquires a fully developed mean-flow profile. Secondly, 
in a mixing layer of finite thickness, turbulence plays a non-negligible role in reducing 
the strength of the shock-cell structure. As mentioned before, a completely inviscid 
shock-cell model could give rather unsatisfactory results. 

To develop a realistic shock-cell model, it will be assumed that solution (2.1) is still 
applicable at the nozzle exit of the jet. However, as each Fourier component 
propagates downstream it is gradually modified by the mean flow of a real jet. In  
this paper, to account for this mean-flow effect the measured mean-flow profile of 
perfectly expanded jets will be used. To simulate the effect of turbulence in the mixing 
layer of the jet, which is very effective in smoothing out sharp velocity and density 
gradients associated with shock waves, eddy-viscosity terms will be added to the 
momentum equation. The measured data of Eggers (1966), Birch t Eggers (1972), 
Lau, Morris & Fisher (1979) and Lau (1981) indicate that the mean flow of an 
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FIQURE 2. Schematic diagram showing the quasi-periodic shock-cell 
structure in the potential core region of a supersonic jet. 

axisymmetric supersonic jet spreads out very slowly in the axial direction. With 
respect to  a cylindrical coordinate system (r, 8, x) centred at the nozzle exit, as shown 
in figure 2, the mean velocity 6 may be represented analytically in the form 

a = [efil(r, s), 0 ,  u(r,  s)], (2.6) 

where E is the rate of spread of the mean flow in the core region of the jet and a = ex 
is a slow variable. Numerically, e is a small number, typically of the order of 0.05. 
Here it will be deemed a small parameter and will be used as such later. 

The governing equations for the axisymmetric weak shock-cell structure are the 
time-independent linearized continuity, momentum and energy equations of a 
compressible fluid. I n  terms of dimensionless variables, with Rj = illj (the radius of 
the fully expanded jet) as the lengthscale, U, (the fully expanded jet velocity) as the 
velocity scale and pj (the fully expanded jet density) as the density scale and pj 
as the pressure scale, these equations may be written as 

l a  a -  
r ar ax 
- - (Fur +pVr) +- (pu+pE) = 0, I 

I n  (2.7) the quantities with an overbar are those of the fully expanded mean flow. 
R = Uj Rj/v ,  is the turbulent Reynolds number and vt is the turbulent eddy viscosity. 

Advantage will now be taken of the fact that  there are two intrinsic but disparate 
lengthscales in the present problem. One lengthscale is associated with the shock-cell 
spacing and the other with the much longer slow rate of spread of the mean flow which 
is characterized by the slow axial variable s = ex. These two lengthscales are very 
different, so that the well-known method of multiple-scales asymptotic expansion (see 
Nayfeh 1973) may be used to treat the present problem. In the following i t  will be 
assumed that the flow perturbations associated with the ith Fourier component of 
the shock-cell structure have an asymptotic expansion in e of the form 
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Equation (2.8) represents a two-scale slowly varying wave solution. In this solution 
O(s) is the local phase function. This function describes the dominant periodicity of 
the shock cells; A,(s) is the nth-order slowly varying wave-amplitude. (u,, v,,p,) are 
the nth-order slowly varying shock-cell structure functions. The appropriate boundary 
conditions are : 

(a) the structure functions (un,vn,pn) must tend to zero as r+ 00, and 
(b) they must remain bounded as r+O. 
In  the present investigation a turbulent viscosity model (see (2.7)) is used to 

account for the effect of turbulence in the mixing layer of the jet on the shock-cell 
structure. Since there is always some uncertainty about such a model and the purpose 
of including such terms is to smooth out the solution and to account for the 
dissipation of shock strength by turbulence, to reduce the amount of computation 
effort required the non-parallel flow effects of these terms are neglected. Actually, 
these neglected terms are quite small. 

Substituting (2.8) into the linearized equationof motion (2.7), and upon partitioning 
terms according to powers of E ,  it  is straightforward to show that the shock-cell 
structure functions are governed by a system of first-order differential equations of 
the form 

d 
dr - Y,-EY, = Q, (n = 0,1,2,3,  ...) (2.9) 

where Y, is a column vector with elements (u,, au,/ar, vn,pn). E is a 4 x 4 matrix 
whose elements are functions of the mean-flow quantities as indicated below : 

E =  

and 

0 1 0 0 

ikR 
aii 

Rp - 
1 
r ar 

-- ikRpii+ kz 

- ik 0 -_ 1 -ikMi 
r 

- ik 
0 R + i k q i i  B 1  B 2  

(2.10) 

(2.11) 

The inhomogeneous terms Q, of (2.9) depend only on the lower-order solutions. In  
particular, Q, = 0, so that the lowest-order equation is homogeneous with homo- 
geneous boundary conditions. Therefore, in general, the solution is y0 = 0. For 
non-trivial solutions the zeroth-order problem must be treated as an eigenvalue 
problem. Here k is the eigenvalue. The real part of k has the physical meaning of being 
the local ith Fourier wavenumber of the quasi-periodic shock cells and the imaginary 
part gives the spatial rate of decay. The eigenvector describes the radial distribution 
of the corresponding Fourier component. Since eigenvectors are determined only up 
to a multiplicative constant, for definiteness we will impose the normalization 
condition 

p , = 1  at r = O  (2.12) ~. 

on the eigenvectors. 
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To find the slowly varying wave-amplitude A,(s) we note that the n = 1 order 
equation of (2.9) is non-homogeneous. Since the homogeneous part of the equation 
possesses an eigensolution, the non-homogeneous equation will not have a solution 
unless Q, is orthogonal to the adjoint eigenvector of the homogeneous problem. It 
is easy to find that the adjoint eigenvector Z is given by the solution of the following 
eigenvalue problem : 

-+ I?+-/ z=o, (2.13a) 

Z is bounded as r + 0, (2.13b) 

Z+O asr+oo.  (2 .13~)  

In (2.13a) I? is the transpose of E. I is the identity matrix. Now if we pre-multiply 
(2.9) by r F  (E  is the transpose of 2) and integrate over r from 0 to 00 we find 
(after integration by parts once and taking into consideration (2.13a)) the following 
equation : 

dZ dr ( f . )  

P a ,  

J r E Q l d r = O .  
0 

(2.14) 

Equation (2.14) is often referred to as the solvability condition. It must be satisfied 
if (2.9) with n = 1 is to have a solution. This solvability condition provides a first-order 
differential equation for the amplitude function A,(s). Writing (2.14) out in full we 
obtain 

(2.15) 

The functions h,(s) and h,(s) are given in Appendix I. Equation (2.15) can be 
integrated easily to yield 

(2.16) 

for underexpanded supersonic jets. For overexpanded jets the ratio DID, should be 
replaced by unity. In deriving (2.16) the constant of integration has been evaluated 
by imposing the initial condition a t  s = 0. At  this location it is required that the first 
term of (2.8) matches the ith Fourier component of the thin vortex-sheet solution, 
(2.1). The function 8, is given by 

(2.17) 

This function represents the first-order non-parallel correction to the locally parallel 
eigensolution of the linear shock structure. Now, with A,(s) determined as above, the 
lowest-order solution of the multiple-scales slowly varying wave solution of (2.8) is 
found. The higher-order terms can, in principle, be constructed by solving the 
non-homogeneous equation (2.9) successively. However, they are numerically in- 
significant and will, therefore, be neglected in this work. 

3. Mean-flow profile and numerical method 
3.1. Speci$cation of mean-$ow profile and parameters 

In this work the measured mean-flow profiles and characteristic parameters of 
perfectly expanded supersonic jets obtained by Eggers (1966), Birch t Eggers (1972), 
Lau et al. (1979) and Lau (1981) will be used in the computation of the linear shock- 
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cell structure. For convenience, the jet will be divided into three regions. They are 
the core, the transition, and the developed regions. From the extensive measured data 
i t  has been found that in all the three regions of the jet the mean-flow velocity profiles 
can be approximated closely by the following simple functions : 

(a,, r <  h, 

a(r, s, [ (r6h)PI 
Uc exp --In (2) - , r > h .  

In (3.1) Uc (the centreline velocity of the jet), h (the radius of the uniform core) and 
b (the half-width of the mixing layer) are functions of the slow variable 5. 

Closest to the nozzle exit is the core region. In this region, Uc of (3.1) is equal to 
unity. Experimentally, it has been found that the axial momentum flux of a jet is 
nearly conserved both in the core and in the developed region. This condition of 
conservation of momentum flux will be used here to provide a functional relation 
between the two remaining parameters, b and h, of (3.1). In the mixing layer 
surrounding the uniform core of the jet the mean flow has a similar velocity profile. 
Because of this similarity, the half-width b may be regarded as a linear function of 
the axial coordinate. In the present calculation the proportionality constant, which 
is 1.266 times the inverse of the spreading rate of the mixing layer, will be taken from 
the data of Birch & Eggers (1972). 

Far downstream of the nozzle is the developed region of the jet. In  this region h 
is identically equal to zero. The condition of conservation of axial momentum flux 
now provides a relation between the jet centreline velocity ii, and the half-width b. 
To complete the specification of the mean-flow profile we will follow the suggestions 
of Lau et al. (1979) and Lau (1981) and adopt the following expression for U, : 

ii, = l-exp[.(l-krl]. 

Moreover, their suggested formulae for a and x,, the length of the uniform core, 
slightly modified to allow a better fit to Eggers’ (1966) data will be used. The modified 
formula for x, is 

where 
The transition region lies between the core and the developed region. In  this region 

the mean velocity profile changes smoothly from one which is characterized by a 
uniform core to one which is characteristic of self-similar fully developed turbulent 
flow. The precise location of this region is difficult to ascertain experimentally. Here 
we will assume that it is centred at x = x, and extends one-and-a-half jet diameters 
upstream and downstream. Within the transition region the values of the parameters 
h, b and ?I, of (3.1) will each be approximated by a cubic spline curve. The coefficients 
of the splines are chosen so that these functions as well as their first derivatives in 
x are continuous throughout the entire jet. In  this way a fair degree of smoothness 

and T, are the jet and ambient temperature respectively. 
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is achieved. This degree of smoothness ensures that the mean flow indeed varies slowly 
in the flow direction as required by the method of multiple scales. 

With the axial mean-flow profile u specified as above, the radial component @ can 
be calculated by integrating the mean continuity equation. The mean density p is 
determined by the Crocco's relation, which gives 

p = ;(y-l)u(l--u)J!q+u+- l+---Mjz (1-U) . [ '.( T j  ?il ) I' (3.4) 

Now the remaining unknown of (2.10) is the turbulent Reynolds number R. The 
proper choice of R is not obvious. However, it  seems reasonable to let R have the 
same numerical value as has been found suitable for the calculation of the mean flow 
of a supersonic jet. On following the usual practice in the theories of free turbulent 
shear flow (see, for example, Schlichting (1960), chapter xxm; Eggers (1966) ; Tam 
(1975)), vt is assumed to  scale by b,  the half-width of the mixing layer, and by u, as 

vt = iKbu,. (3.5) 

In  the mean-flow calculation of Tam, the quantity K in (3.5) was allowed to vary 
slowly over the entire length of the jet. However, over the potential core and the 
initial part of the developed region the average value of K is approximately equal 
to  A. This givcs a turbulent Reynolds number based on b equal to 

For convenience, in all the numerical computations of this paper (except when it is 
explicitly stated) the value Rb = 300 is used. 

3.2. Numerical solution 

With the mean-flow profiles defined as above and the mean density p determined by 
the Crocco's relation one can proceed to solve the eigenvalue problem of (2.9). Outside 
the jet flow, say a t  r = h+3.56, there is practically no mean flow. Here the matrix 
E of (2.10) is considerably simplified. This simplification allows the homogeneous 
equation (2.9) to  be solved in closed analytical form in terms of Hankel functions of 
the first kind. These solutions are given in Appendix 2. At r = 0 (2.9) is singular. 
Two Frobenius series solutions which are bounded at r+O can, however, be obtained 
in a straightforward manner. These series solutions and the exact solution for 
r 2 h+3.5b can now be used to start numerical integrations outward and inward 
respectively towards the half-velocity point r = r; = h + b. At r = q the two solutions 
so calculated must be joined together to obtain continuity. This, in general, cannot 
be done unless k takes on special values, namely the eigenvalues. Thus this joining 
condition provides an iterative criterion for the computation of the eigenvalue k and 
the corresponding eigenvector. With the eigenvalue and eigenvector calculated and 
the adjoint eigenvector computed in a similar manner, the numerical value of h, and 
h, of (2.17) may be evaluated readily. The ratio of these two quantities gives the 
non-parallel flow correction to the locally parallel flow results. 

4. Comparison of numerical results with experiment 
Extensive pressure measurements obtained a t  the NASA Langley Research Center 

of the shock-cell structures of imperfectly expanded supersonic jets are available in 
the comprehensive data report of Norum & Seiner (1982 b). A careful study of these 
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FIGURE 3. Axial pressure distribution at r / D  = 0.38, M, = 1.82, Md = 2.0: (a) measured (Norum 
BE Seiner 19828); (b )  calculated; (c) superposition of measured and calculated pressure distributions. 

data reveals that the shock cells are rich in fine details. This is especially true in the 
region immediately downstream of the nozzle exit - say over the first three to four 
shock cells. Since the primary objective of this work is to provide a suitable shock-cell 
model for shock-associated noise calculation, in comparing calculated results with 
experiments, therefore, attention will be focused principally on the gross features of 
the shock cells, such as the shock spacings and amplitudes. The fine details of the 
shock structure are not known to play any important role in noise generation. In 
addition, the measurements indicate that the mean static pressure inside the jets 
is not truly constant in accordance with the boundary-layer approximation. Near the 
end of the potential core and beyond, the mean static pressure is consistently 
somewhat below the ambient value. This small discrepancy, which is inherent in the 
mean-flow assumption, should be borne in mind when comparing the measured results 
with calculations. 

4.1. Comparison of axial pressure distribution 
The present model is linear. As such, the calculated results are expected to agree better 
with measurements if the shocks are weak or when l q -  Wdl is small. Thus it seems 
appropriate to begin comparing the theoretical results of the present model with 
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& Seiner 1982b); ( b )  calculated; (c) superposition of measured and calculated pressure distributions. 

experiments by first considering those cases for which the jets are operated at very 
slightly off-design conditions. Throughout this section the experimental data are 
taken from the report of Norum & Seiner (1982b). Figure 3 shows a comparison of 
the measured and calculated axial pressure distribution for a weak shock-cell 
structure at a radial distance of r / D  = 0.38. The jet is operated at a fully expanded 
Mach number M j  of 1.82 and is issued from a convergenedivergent nozzle of design 
Mach number Md of 2.0. The measured pressure difference p ,  normalized by the 
ambient pressure pa as a function of downstream distance is given in figure 3 (a). The 
calculated values are shown in figure 3 ( b ) .  Figure 3(c) is a superposition of the 
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calculated and measured pressure distribution. As can be’ seen, there is very 
favourable overall agreement between the measured and calculated pressure distri- 
butions over the full length of the supersonic region of the jet. Both the shock-cell 
spacings and pressure amplitudes agree extremely well. Within the region of the first 
four shock cells the calculated pressure distribution exhibits many fine structures, 
such as those minor oscillations at ‘A’ and ‘B’. They appear to match those of the 
measured curve. Although there is some slight difference quantitatively, considering 
the richness of the details and the simplicity of the model the agreement must be 
regarded as remarkable. Figure 4 shows a similar comparison but for a more severe 
off-design condition with Mj = 1.67, Md = 2.0. The overall agreement in terms of 
shock-cell spacing and amplitude is again quite favourable. The only exception is that 
the measured data appear to decay abruptly after the fifth shock cell. Further 
supporting measurements have shown that for jets exhibiting strong resonance 
behaviour, i.e. screech, the jet plume shock-structure decays rapidly beyond the 
potential core. The data of figure 4 refer to such a condition, and it is to be expected 
that large differences will occur between prediction and measurements due to the 
nature of the present time mean formulation. The numerical method of Dash & Wolf 
(1983) also exhibits similar difficulties in predicting the resonant supersonic jet (see 
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Seiner, Dash & Wolf 1983). The comparison in figure 4 does, however, show that a 
good qualitative agreement exists between theory and experiment for the first several 
shocks, the fine details being represented very well. The above two cases involve 
overexpanded jets. Figure 5 shows a comparison between theory and experiment for 
the case of an underexpanded jet withMj = 1.67 and Md = 1.5. The overall agreement 
between the measured and calculated values of the spacings and amplitudes of 12 
shock cells, as can be seen readily in figure 5(c), is again quite good. In the first three 
shock cells the measured data in figure 5(a) contain several minor peaks and 
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irregularities as in the case of overexpanded jets. The calculated pressure distribution 
in figure 5 ( b )  appears to reproduce these peculiar features. Although they are 
somewhat wider the absolute amplitudes of these irregularities appear to have been 
calculated correctly. 

To test whether the present linear shock-cell model is valid at  the upper limit of 
the range of off-design conditions defined by (1.3), a series of comparisons between 
measured data and calculated results for the case Mj = 2.24, bl, = 2.0 
(q-wd = 1.0) at three radial positions will now be made. Figure 6 ( a )  and (b) shows 
the measured and calculated pressure distribution at a radial location r / D  = 0.25 
from the jet axis. Figure 6 ( c )  is a superposition of these two figures to allow for an 
easy overall comparison. There are fourteen identifiable shock cells in the measurement. 
They are quite accurately reproduced in the calculation. The slight difference between 
the measured and calculated curves beginning with the eighth shock cell is mainly 
due to the fact (already pointed out) that the mean static pressure of the jet is 
somewhat below the ambient value, whereas in the calculation, for simplicity, it has 
been assumed to be equal. Figure 7 shows a comparison of the measured and 
calculated results at a radial location farther away from the jet axis. At  r/D = 0.45 
the shock cells are well inside the mixing layer of the jet. Figure 7 ( c ) ,  which is a 
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superposition of the measured and calculated pressure distributions, shows that there 
is again very favourable overall agreement between experiment and theory. In the 
first shock cell of the measured data (figure 7 a )  there are numerous fine-scale spatial 
oscillations in the pressure distribution. These oscillations are accurately predicted 
in the calculation, as can be seen in figure 7 (b). Over the second to the fourth shock 
cells the theoretical curve qualitatively reproduces the fine spatial features of 
the measurement. However, quantitatively, the width is slightly inaccurate. 
Figures ~(u-c) show the measured and computed pressure distributions along the 
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centreline of the jet. There is again good overall agreement between the two. The 
good agreement is comparable to those of figures 6 and 7. The fine structures which 
appear in the first two shock cells of the measured data are once more qualitatively 
reproduced by the calculation. The theoretical results shown in figures 6-8 indicate 
that the present analysis properly accounts for the radial decay of shock strength, 
which is a natural feature of jet plume dynamics. In  summary, based on the very 
favourable comparisons between measured and calculated results at the three radial 
locations r / D  = 0.0,0.25,0.45, as shown in figures 6 , 7  and 8, it is possible to conclude 
that the present multiple-scales model can provide quite accurate prediction of the 
gross properties of the shock-cell structure even at the upper limit of the jet operating 
range defined by (1.3). This is true for both axial and radial pressure distributions. 

4.2. The roles of the fundamental and higher-order modes 

Having demonstrated that the present model can provide fairly accurate prediction 
of the shock-cell structure within the intended range of jet operating conditions, we 
will now use this model to examine some underlying physics of the shock-cell 
structure that have a direct bearing on the observed characteristics of shock-associated 
noise. In  figures 3-8 the calculated axial pressure distributions are made up of a linear 
combination of the first seven Fourier components or modes of the shock-cell model. 
Obviously different modes play different roles in defining the shock-cell structure. 
Some are, of course, more important than others. Figure 9 shows the spatial 
distribution of the first six Fourier modes which make up the theoretical pressure 
distribution of figure 8(b ) .  As can be seen easily, the wavelengths and initial 
amplitudes of the higher-order modes decrease rapidly as the mode number increases. 
In addition, their amplitudes diminish to zero over an increasingly shorter distance. 
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make up the pressure distribution of figure 8 ( b ) .  

These observations indicated clearly that the higher-order modes are important only 
in contributing to the fine structures of the beginning shock cells. Further, beyond 
the first four or five shock cells the shock-cell structure can be approximated 
reasonably well by using only the first or the fundamental mode. 

To demonstrate the relationship between the higher-order modes and the fine 
structures of the shock cells, the six modes of figure 9 are recombined in two different 
ways. They are shown in figure 10. Figure 10(a) is just the first mode. Figure 10(b) 
is a combination of the first three modes. Notice that the addition of the second and 
third modes introduces some fine structures in the first three shock cells. Figure 1O(c) 
is a combination of the first six modes. As can be seen easily in this figure, the addition 
of the next three modes refines the fine structures further. With seven modes, these 
fine structures are fully developed as shown in figure 8( b). Figure 11 gives another 
example illustrating this point. The jet operating conditions for these calculated 
results are identical to those of figure 3. Figure 11 (a) consists of the first mode alone. 
Figure 11 (b) is obtained by adding on to figure 11 (a) two additional modes. Again, 



1.4 

1.2 

1 .O 

0.8 

0.6 

0.4 

0.2 

5 0  
Pa 

-0.2 

-0.4 

-0.6 

-0.8 

-1.0 

-1.2 

-1.4 

-1.6 

Shock-cell structure of supersonic jets 

(a: 

0 5 10 15 20 25 30 
XlD 

-1.6 
0 5 10 IS 20 25 30 

FIGURES 10(a) and ( b ) .  For caption we p. 142. 

XlD 

141 



142 C.  K .  W .  Tam, J .  A .  Jackson and J .  M .  Seiner 

5 10 15 20 25 30 
X l D  

0 

FIQURE 10. (a) Axial pressure distribution of the fundamental mode alone. r / D  = 0.0, M j  = 2.24, 
Md = 2.0. ( b )  Combined axial pressure distribution of the first three Fourier modes. r / D  = 0.0, 
M, = 2.24, Md = 2.0. (c) Combined axial pressure distribution of the first six Fourier modes. 
r lD  = 0.0, Mj = 2.24, Md = 2.0. 

0.2 

0 

- 0.2 

!!! 
P. 

0.2 

0 

-0.2 

0.2 

( 

- 0.: 

15 
X l D  

0 5 10 

FIQURE 11. Axial pressure distribution r / D  = 0.38, Mj = 1.82, Md = 2.0: ( a )  fundamental 
mode only; ( b )  first three modes; (c) first six modes. 



Shock-cell structure of supersonic jets 143 

0.6 

0.4 

0.2 
!5 
pa 0 

-0.2 

-0.4 
I "  v 

- 1.0 
30 

:::I. , ,  . ,  , . , ,  I , ,  , , , , ,  , , I  , , (  , , , . ,  

0 5 10 15 20 25 

X l D  

FIGURE 12. Comparison between measured pressure distribution at rlD = 0.25, M, 7 2.24, 
Md = 2.0 (dark curve, Norum & Seiner 19823) and calculated pressure distribution of the first mode 
(lighter curve). 

these additional modes produce h e  structures in the first four shock cells. In  
figure 11 (c)  three more modes are added. Clearly with six modes the fine details of 
the shock cells are now well established. 

By examining figures 10 and 11 it  should be evident that beyond the first four or 
five shock cells only the first (or the fundamental) mode contributes significantly to 
the shock-cell pressure amplitude. To provide further evidence to substantiate this 
conclusion, comparisons between measured data and the calculated pressure 
distribution corresponding to the first mode alone for two additional cases will now 
be presented. Figure 12 shows the case with M, = 2.24, Md = 2.0 and r/D = 0.25. 
Figure 13 is for a choked jet with Md = 1.0. The fully expanded jet Mach number 
is 1.166. It is clear from these figures that beyond the first few shock cells there is 
favourable overall agreement between the calculated results and experiments 
(assuming the mean pressure difference is subtracted out). In fact, the agreement is 
reasonably good even for the first few shock cells. 

4.3. The effect of turbulent Reynolds number 

In all the numerical results reported so far the turbulent Reynolds number, R,, based 
on the half-width of the jet mixing layer, has been set equal to 300. As was discussed 
in $3 this value was chosen because it was an appropriate value for mean-flow 
calculation for shock-free jets. However, it must be pointed out that there is really 
no a priori reason that this same value is also suitable for shock-cell structure 
calculations. 

Let us now examine the effect of turbulent Reynolds number on the calculated axial 
pressure distribution. For this purpose, we will study the consequence of varying the 
turbulent Reynolds number on the first mode of the shock-cell structure for a jet 
operating at Mj = 2.24, M d  = 2.0 and at  r / D  = 0. The experimental measurements 
corresponding to this case can be found in figure 8. Figure 14 shows the calculated 
results at turbulent Reynolds numbers of 150, 300 and 500. It is evident from this 
figure that the variation of turbulent Reynolds number has very little effect on the 
spacings or wavelengths of the shock cells. However, there is a significant effect on 
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the pressure amplitude. At R, = 150 the shock-cell amplitude decreases very rapidly 
after the fourth cell. On the other hand, at R, = 500 the calculated pressure 
amplitude remains quite large until more or less the transonic point of the jet. A 
systematic analysis indicates that setting R, = 300 produces nearly the best overall 
agreement with experiment as can be seen in figure S(c) .  It is interesting to  recall 
that  this is the same as the best value for mean-flow calculation. The coincidence here 
is, of course, not completely accidental. As has been shown, within the jet operating 
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range defined by (1.3) the shocks of the shock-cell structure are weak. This is 
particularly true beyond the fourth or fifth shock cells where the shock structure is 
essentially represented by only the first Fourier mode. Thus the ‘shocks’ are not really 
shocks with sharp discontinuities as have been generally taken for granted. The 
associated gradients are sufficiently smooth that the effect of turbulence on these 
shocks is more or less the same as that on the mean flow. With this understanding 
it is, therefore, not surprising that the same turbulent Reynolds number should be 
used in both instances. 

4.4. Non-parallel flow correction 
In the multiple-scales shock-cell structure model developed in $2, the calculations are 
to be performed in two basic steps. The first step is to determine the local eigenvalues 
and eigenvectors as if the mean flow is parallel. Upon the completion of this step the 
amplitude function A,(s) is calculated using the solvability condition. The spatial 
variation of A,(s) or, more generally, e,(s) is referred to as the non-parallel flow 
correction. It is well known that, although the total solution is unique, the magnitude 
of A, or by itself is affected by the normalization condition imposed on the 
eigenvectors. In  this work the normalization condition (2.12) has been used throughout. 
To assess the importance of non-parallel flow correction, let us compare the calculated 
wavelength and decay rate of the fundamental (or the first) mode with and without 
this correction. A typical case is shown in figures 15 and 16. In  figure 15 the 
wavenumber, Re ( k )  (locally parallel flow), and Re (k+  k,)  (with non-parallel flow 
correction) are plotted as a function of downstream distance. Since the two curves 
are practically identical the non-parallel flow effect on wavenumbers is for all intents 
and purposes negligible. Figure 16 shows the corresponding results for the decay rate 
Im (k) and Im ( k  + k,) .  Over the core and the transition region of the jet the non-parallel 
flow cor.rection is small. Only well inside the developed region of the jet is this effect 
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FIGURE 16. Comparison of spatial rate of decay with and without non-parallel flow correction. 
-, Im(k); ---, Im(k+k,);  Mj = 2.24, T,/T, = 1.0, first mode. 

significant. To determine computationally the non-parallel flow correction requires 
far more effort than is necessary to calculate the basic eigenvalue and eigenvectors 
of the locally parallel flow solutions. Now with normalization condition (2.12) the 
non-parallel flow effect appears to  be not important over most parts of the shock-cell 
structure. This finding permits one to calculate the shock-cell structure using the 
simpler locally parallel approximation alone. In  this way a good deal of non-essential 
computation may be avoided. 

5. Concluding remarks 
In  this paper a linear shock-cell model is developed for supersonic jets operated at 

slightly off-design conditions. The model accounts for the slow variation of the mean 
flow in the downstream direction and the effect of turbulence in the mixing layer of 
the jet. As a result of the spatial change of the mean flow the shock-cell spacing 
decreases gradually in the axial direction. From the nozzle exit to approximately the 
end of the potential core where it is known (see Norum & Seiner 1982a; and Seiner 
& Yu 1981) that the dominant sources of broadband shock-associated noise are 
located, the change in shock-cell spacing is riot negligible. Figure 17 shows a 
comparison of the predicted peak frequencies of broadband shock-associated noise 
as a function of observation angle 8 according to (1.2) using the shock-cell spacing 
at the end of the potential core of the jet calculated by the present model and by 
the vortex-sheet model. In the calculation, uc has been taken to be equal to 0 . 7 ~ ~  
following the experimental observations of Harper-Bourne & Fisher (1973) and Seiner 
& Yu (1981). From figure 17 it  is seen that the peak frequencies predicted by the 
present model agree better with the measurements of Tam & Tanna (1982) over all 
angles. This better agreement should lend confidence in using the present model as 
a starting-point for the development of a mathematical theory of shock-associated 
noise. 
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The experimental data shown in figure 17 are typical of all shock-associated noise 
spectra. At a given direction /3 the noise spectrum is dominated by a single peak. A 
satisfactory explanation of why there is a single dominant peak does not appear to 
have been given in the literature. In  fact, according to the vortex-she& shock-cell 
model (see Tam & Tanna 1982), there should be an array of spectral peaks. Each peak 
is supposed to be generated by the interaction of the downstream-propagating large 
turbulence structures in the mixing layer of the jet and a Fourier component of the 
quasi-periodic shock cells. Now the reason why only a single prominent peak is 
observed appears to lie in what was found in 34.2. That is, after four or five shock 
cells the shock-cell structure consists mainly of the fundamental mode. At the nozzle 
exit the large turbulence structures are weak. They grow in amplitude as they 
propagate downstream. In the region near the end of the potential core of the jet 
where they grow to  sufficiently large amplitudes to interact with the shock-cell 
structure to generate intense sound waves, the shock-cell structure effectively consists 
of one single Fourier component. For this reason the observed broadband noise 
spectrum has only one dominant peak and the peak frequency can be predicted by 
using the wavelength of the fundamental mode of the shock-cell structure. 

Two of the authors (C. K. W.T. & J. A. J.) wish to acknowledge the support of NASA 
Lewis Research Center under Grant NAG3-182. 
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Appendix 1 
The functions h,(s) and h,(s) of (2.15) are given by 

where Zi is the ith element of the adjoint eigenvector Z. 

Appendix 2 
For large r ,  two linearly independent solutions of (2.9) are 

Hc)( ikr) rHil) (ikr ) 

= [ -..T!;i(gj and [ ikrH2) -rHLl)(ikr) (i kr ) 1' 
(2/R) Hg)(ikr) 

where Hc,') is the nth-order Hankel function of the first kind. 

(2.9) can also be found. They are ( r  < h) 
In  the uniform core of the jet where U = uj, two linearly independent solutions of 
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